14,168 research outputs found

    Curvature representation of the gonihedric action

    Get PDF
    We analyse the curvature representation of the gonihedric action A(M)A(M) for the cases when the dependence on the dihedral angle is arbitrary.Comment: 10 pages, LaTeX, 3 embedded figures with psfig, submitted to Phys.Lett.

    The equation of state of neutron star matter and the symmetry energy

    Full text link
    We present an overview of microscopical calculations of the Equation of State (EOS) of neutron matter performed using Quantum Monte Carlo techniques. We focus to the role of the model of the three-neutron force in the high-density part of the EOS up to a few times the saturation density. We also discuss the interplay between the symmetry energy and the neutron star mass-radius relation. The combination of theoretical models of the EOS with recent neutron stars observations permits us to constrain the value of the symmetry energy and its slope. We show that astrophysical observations are starting to provide important insights into the properties of neutron star matter.Comment: 7 pages, 3 figure, talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Dark states of single NV centers in diamond unraveled by single shot NMR

    Full text link
    The nitrogen-vacancy (NV) center in diamond is supposed to be a building block for quantum computing and nanometer scale metrology at ambient conditions. Therefore, precise knowledge of its quantum states is crucial. Here, we experimentally show that under usual operating conditions the NV exists in an equilibrium of two charge states (70% in the expected negative (NV-) and 30% in the neutral one (NV0)). Projective quantum non-demolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. The nuclear spin can be coherently driven also in NV0 (T1 ~ 90 ms and T2 ~ 6 micro-s).Comment: 4 pages, 3 figure

    Possible field-tuned SIT in high-Tc superconductors: implications for pairing at high magnetic fields

    Full text link
    The behavior of some high temperature superconductors (HTSC) such as La2xSrxCuO4\rm La_{2-x}Sr_{x}CuO_{4} and Bi2Sr2xLaxCuO6+δ\rm Bi_{2}Sr_{2-x}La_xCuO_{6+\delta}, at very high magnetic field, is similar to that of thin films of amorphous InOx near the magnetic field-tuned superconductor-insulator transition. Analyzing the InOx data at high fields in terms of persisting local pairing amplitude, we argue by analogy that local pairing amplitude also persists well into the dissipative state of the HTSCs, the regime commonly denoted as the "normal state" in very high magnetic field experiments.Comment: Revised figures and reference

    Escape Orbits for Non-Compact Flat Billiards

    Full text link
    It is proven that, under some conditions on ff, the non-compact flat billiard Ω={(x,y)R0+×R0+; 0yf(x)}\Omega = \{ (x,y) \in \R_0^{+} \times \R_0^{+};\ 0\le y \le f(x) \} has no orbits going {\em directly} to ++\infty. The relevance of such sufficient conditions is discussed.Comment: 9 pages, LaTeX, 3 postscript figures available at http://www.princeton.edu/~marco/papers/ . Minor changes since previously posted version. Submitted to 'Chaos

    On the π\pi and KK as qqˉq \bar q Bound States and Approximate Nambu-Goldstone Bosons

    Full text link
    We reconsider the two different facets of π\pi and KK mesons as qqˉq \bar q bound states and approximate Nambu-Goldstone bosons. We address several topics, including masses, mass splittings between π\pi and ρ\rho and between KK and KK^*, meson wavefunctions, charge radii, and the KπK-\pi wavefunction overlap.Comment: 15 pages, late

    Teleportation: from probability distributions to quantum states

    Get PDF
    The role of the off-diagonal density matrix elements of the entangled pair is investigated in quantum teleportation of a qbit. The dependence between them and the off-diagonal elements of the teleported density matrix is shown to be linear. In this way the ideal quantum teleportation is related to an entirely classical communication protocol: the one-time pad cypher. The latter can be regarded as the classical counterpart of Bennett's quantum teleportation scheme. The quantum-to-classical transition is demonstrated on the statistics of a gedankenexperiment.Comment: 11 pages, 1 figure, accepted for publication in J. Phys. A (Math. Gen.

    The Strange Star Surface: A Crust with Nuggets

    Full text link
    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient ( 1026~10^{26} g/cm4^4) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure
    corecore